如何編寫Linux的設備驅動程序

作者:Roy G

摘要:比較直觀地介紹了Linux設備驅動程序的開發原理

序言

Linux

思想完全類似于其他的

區別

支持函數少

試也不方便

是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和Unix系統,但它dos或window環境下的驅動程序有很大的.在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調.本人這幾周來爲實驗室自行研制的一塊多媒體卡編制了驅動程序,

獲得了一些經驗

Brennan's Guide to Inline Assembly,The Linux A-Z,

,願與Linux fans共享,有不當之處,請予指正.以下的一些文字主要來源于khg,johnsonm的Write linux device driver,還有清華BBS上的有關

device driver

據自己的試驗結果進行了修正

的一些資料. 這些資料有的已經過時,有的還有一些錯誤,我依.

. Linux device driver 的概念

內核和機器硬件之間的接口

在應用程序看來

一樣對硬件設備進行操作

1.

2.

3.

4.

塊設備

的硬件

系統調用是操作系統內核和應用程序之間的接口,設備驅動程序是操作系統.設備驅動程序爲應用程序屏蔽了硬件的細節,這樣,硬件設備只是一個設備文件, 應用程序可以象操作普通文件.設備驅動程序是內核的一部分,它完成以下的功能:對設備初始化和釋放.把數據從內核傳送到硬件和從硬件讀取數據.讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據.檢測和處理設備出現的錯誤.在Linux操作系統下有兩類主要的設備文件類型,一種是字符設備,另一種是.字符設備和塊設備的主要區別是:在對字符設備發出讀/寫請求時,實際I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,

當用戶進程對設備請求能滿足用戶的要求

來等待

都有其文件屬性

備號

設備驅動程序的不同的硬件設備

他們

一致

搶先式調度

的工作

是漫長的

(

,就返回請求的數據,如果不能,就調用請求函數來進行實際I/O操作.塊設備是主要針對磁盤等慢速設備設計的,以免耗費過多的CPU時間.已經提到,用戶進程是通過設備文件來與實際的硬件打交道.每個設備文件都(c/b),表示是字符設備還蔤強樯璞?另外每個文件都有兩個設,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個,比如有兩個軟盤,就可以用從設備號來區分.設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號,否則用戶進程將無法訪問到驅動程序.最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是.也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他.如果你的驅動程序陷入死循環,不幸的是你只有重新啓動機器了,然後就fsck.//hehe請看下節,實例剖析)

.實例剖析

可以了解

獲得一個真正的設備驅動程序

我們來寫一個最簡單的字符設備驅動程序.雖然它什麽也不做,但是通過它Linux的設備驅動程序的工作原理.把下面的C代碼輸入機器,你就會.不過我的kernel是2.0.34,在低版本的kernel

上可能會出現問題

#define __NO_VERSION__

#include <linux/modules.h>

#include <linux/version.h>

char kernel_version [] = UTS_RELEASE;

,我還沒測試過.//xixi

這一段定義了一些版本信息

有的驅動程序的開頭都要包含

,雖然用處不是很大,但也必不可少.Johnsonm說所<linux/config.h>,但我看倒是未必.

由于用戶進程是通過設備文件同硬件打交道

是一些系統調用

,對設備文件的操作方式不外乎就,如 open,read,write,close...., 注意,不是fopen, fread.,

但是如何把系統調用和驅動程序關聯起來呢

結構

struct file_operations {

int (*seek) (struct inode * ,struct file *, off_t ,int);

int (*read) (struct inode * ,struct file *, char ,int);

int (*write) (struct inode * ,struct file *, off_t ,int);

int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);

int (*select) (struct inode * ,struct file *, int ,select_table *);

int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long

int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}

在對設備文件進行諸如

找到相應的設備驅動程序

權交給該函數

設備驅動程序的主要工作就是編寫子函數

?這需要了解一個非常關鍵的數據:這個結構的每一個成員的名字都對應著一個系統調用.用戶進程利用系統調用read/write操作時,系統調用通過設備文件的主設備號,然後讀取這個數據結構相應的函數指針,接著把控制.這是linux的設備驅動程序工作的基本原理.既然是這樣,則編寫,並填充file_operations的各個域.

相當簡單

,不是嗎?

下面就開始寫子程序

#include <linux/types.h>

#include <linux/fs.h>

#include <linux/mm.h>

#include <linux/errno.h>

#include <asm/segment.h>

unsigned int test_major = 0;

static int read_test(struct inode *node,struct file *file,

char *buf,int count)

{

int left;

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count ; left > 0 ; left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}

.

這個函數是爲

緩沖區全部寫

buf

read調用准備的.當調用read時,read_test()被調用,它把用戶的1.是read調用的一個參數.它是用戶進程空間的一個地址.但是在read_test

被調用時

,系統進入核心態.所以不能使用buf這個地址,必須用__put_user(),

這是

函數

kernel提供的一個函數,用于向用戶傳送數據.另外還有很多類似功能的.請參考<linux/mm.h>.在向用戶空間拷貝數據之前,必須驗證buf是否可用.

這就用到函數

static int write_tibet(struct inode *inode,struct file *file,

const char *buf,int count)

{

return count;

}

static int open_tibet(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT;

return 0;

} static void release_tibet(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

verify_area.

這幾個函數都是空操作

提供函數指針。

.實際調用發生時什麽也不做,他們僅僅爲下面的結構

struct file_operations test_fops = {

NULL,

read_test,

write_test,

NULL, /* test_readdir */

NULL,

NULL, /* test_ioctl */

NULL, /* test_mmap */

open_test,

release_test, NULL, /* test_fsync */

NULL, /* test_fasync */

/* nothing more, fill with NULLs */

};

設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序

可以按照兩種方式編譯。一種是編譯進

kernel,另一種是編譯成模塊(modules),

如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能

動態的卸載,不利于調試,所以推薦使用模塊方式。

int init_module(void)

{

int result;

result = register_chrdev(0, "test", &test_fops);

if (result < 0) {

printk(KERN_INFO "test: can't get major number ");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}

在用

這裏,

設備。

零的話,系統將選擇一個沒有被占用的設備號返回。參數二是設備文件名,

參數三用來登記驅動程序實際執行操作的函數的指針。

如果登記成功,返回設備的主設備號,不成功,返回一個負值。

insmod命令將編譯好的模塊調入內存時,init_module 函數被調用。在init_module只做了一件事,就是向系統的字符設備表登記了一個字符register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是

void cleanup_module(void)

{

unregister_chrdev(test_major, "test");

}

在用

rmmod卸載模塊時,cleanup_module函數被調用,它釋放字符設備test

在系統字符設備表中占有的表項。

一個極其簡單的字符設備可以說寫好了,文件名就叫

下面編譯

test.c吧。

$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c

得到文件

如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後

test.o就是一個設備驅動程序。

ld -r file1.o file2.o -o modulename.

驅動程序已經編譯好了,現在把它安裝到系統中去。

$ insmod -f test.o

如果安裝成功,在

/proc/devices文件中就可以看到設備test,

並可以看到它的主設備號

要卸載的話,運行

,。

$ rmmod test

下一步要創建設備文件。

mknod /dev/test c major minor

c

是指字符設備,major是主設備號,就是在

/proc/devices裏看到的。shell命令

$ cat /proc/devices | awk "\$2=="test" {print \$1}"

就可以獲得主設備號,可以把上面的命令行加入你的

shell script中去。

minor

我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。

是從設備號,設置成0就可以了。

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file ");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d ",buf[i]);

close(testdev);

}

編譯運行,看看是不是打印出全

以上只是一個簡單的演示。真正實用的驅動程序要複雜的多,要處理如中斷,

1 ?

DMA

,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。

如何編寫Linux操作系統下的設備驅動程序

Roy G

設備驅動程序中的一些具體問題。

1. I/O Port.

對任意的

誤用端口。

和硬件打交道離不開I/O Port,老的ISA設備經常是占用實際的I/O端口,linux下,操作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可以I/O口操作,這樣就很容易引起混亂。每個驅動程序應該自己避免

有兩個重要的kernel函數可以保證驅動程序做到這一點。

1

)check_region(int io_port, int off_set)這個函數察看系統的I/O表,看是否有別的驅動程序占用某一段I/O口。

參數1:io端口的基地址,

參數2:io端口占用的範圍。

返回值:0 沒有占用, 非0,已經被占用。

2

之前,必須向系統登記,以防止被其他程序占用。登記後,在

)request_region(int io_port, int off_set,char *devname)如果這段I/O端口沒有被占用,在我們的驅動程序中就可以使用它。在使用

/proc/ioports

文件中可以看到你登記的

io口。

參數1:io端口的基地址。

參數2:io端口占用的範圍。

參數3:使用這段io地址的設備名。

在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。

于訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。在

(之所以不說是

在是太簡單,太不安全了)只要用段:偏移就可以了。在

在一些pci設備中,I/O端口被映射到一段內存中去,要訪問這些端口就相當dos環境下,dos操作系統是因爲我認爲DOS根本就不是一個操作系統,它實window95中,95ddk

提供了一個

vmm 調用 _MapLinearToPhys,用以把線性地址轉化爲物理地址。但Linux中是怎樣做的呢?

2

內存操作

在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用

get_free_pages

直接申請頁。釋放內存用的是kfree,或free_pages. 請注意,

kmalloc

等函數返回的是物理地址!而malloc等返回的是線性地址!關于

kmalloc

地址的轉換是由

驅動程序同樣也不能直接使用物理地址而是線性地址。但是事實上

返回的是物理地址這一點本人有點不太明白:既然從線性地址到物理386cpu硬件完成的,那樣彙編指令的操作數應該是線性地址,kmalloc

返回的確實是物理地址,而且也可以直接通過它訪問實際的

以由兩種解釋,一種是在核心態禁止分頁,但是這好像不太現實;另一種是

RAM,我想這樣可

linux

不知對不對,還請高手指教。

的頁目錄和頁表項設計得正好使得物理地址等同于線性地址。我的想法

結構占用了。

言歸正傳,要注意kmalloc最大只能開辟128k-16,16個字節是被頁描述符kmalloc用法參見khg.內存映射的I/O口,寄存器或者是硬件設備的RAM(如顯存)一般占用F0000000

以上的地址空間。在驅動程序中不能直接訪問,要通過

重新映射以後的地址。

kernel函數vremap獲得

駐留在內存,不能被交換到文件中去。但是

這可以通過犧牲一些系統內存的方法來解決。

具體做法是:比如說你的機器由

另外,很多硬件需要一塊比較大的連續內存用作DMA傳送。這塊內存需要一直kmalloc最多只能開辟128k的內存。32M的內存,在lilo.conf的啓動參數中加上

mem=30M

,這樣linux就認爲你的機器只有30M的內存,剩下的2M內存在vremap

之後就可以爲

請記住,用

DMA所用了。vremap映射後的內存,不用時應用unremap釋放,否則會浪費頁表。

3

中斷處理

同處理I/O端口一樣,要使用一個中斷,必須先向系統登記。

int request_irq(unsigned int irq ,

void(*handle)(int,void *,struct pt_regs *),

unsigned int long flags,

const char *device);

irq:

是要申請的中斷。

handle

:中斷處理函數指針。

flags

:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。

device

:設備名。

中斷。

如果登記成功,返回0,這時在

/proc/interrupts文件中可以看你請求的

4

一些常見的問題。

的話,

對硬件操作,有時時序很重要。但是如果用C語言寫一些低級的硬件操作gcc往往會對你的程序進行優化,這樣時序就錯掉了。如果用彙編寫呢,

gcc

辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼

都不優化,你會發現驅動程序根本無法裝載。這是因爲在編譯驅動程序時要

用到

出來。

同樣會對彙編代碼進行優化,除非你用volatile關鍵字修飾。最保險的gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現

不勝感激。我一直都在

關于kernel的調試工具,我現在還沒有發現有合適的。有誰知道請告訴我,printk打印調試信息,倒也還湊合。

我還不是很明白,不敢亂說。

關于設備驅動程序還有很多內容,如等待/喚醒機制,塊設備的編寫等。

歡迎大家批評指正。

如何編寫Linux的設備驅動程序
如何編寫Linux的設備驅動程序 如何編寫Linux的設備驅動程序 作者:Roy G摘要:比較直觀地介紹了Linux設備驅動程序的開發原理 序言Linux思想完全類似于其他的區別支持函數少試也不方便是Unix操作系統的一...查看完整版>>如何編寫Linux的設備驅動程序
 
如何編寫Linux的設備驅動程序
作者:Roy G摘要:比較直觀地介紹了Linux設備驅動程序的開發原理 序言Linux思想完全類似于其他的區別支持函數少試也不方便是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和Unix系統,但它dos或window環境下...查看完整版>>如何編寫Linux的設備驅動程序
 
爲系統處理器編寫Linux設備驅動程序
  引 言   編寫 Linux 設備驅動程序無疑是一項複雜的工作。本文將集中介紹非標准硬件的設備驅動程序編寫,探討硬件應用編程接口,並借用 Cirrus Logic EP9312 片上系統嵌入式平台添加設備驅動程序這一案例來進行...查看完整版>>爲系統處理器編寫Linux設備驅動程序
 
Linux下的設備驅動程序的編寫
自己要做驅動程序方面的東西,在看過一些書籍之後,整理思路總結一下驅動程序的編寫。只是停留在理論的階段,適合初學者。一:驅動程序的框架1. 1按接口劃分:u 驅動程序與操作系統內核的接口。主要通過file_operatio...查看完整版>>Linux下的設備驅動程序的編寫
 
Linux網絡驅動程序編寫(一)
     工作需要寫了我們公司一塊網卡的Linux驅動程序。經曆一個從無到有的過程,深感技術交流的重要。Linux作爲挑戰微軟壟斷的強有力武器,日益受到大家的喜愛。真希望她能在中國迅速成長。把程序文檔貼出來,希望...查看完整版>>Linux網絡驅動程序編寫(一)
 
Linux網絡驅動程序編寫(二)
     二.Linux系統網絡設備驅動程序  2.1網絡驅動程序的結構  所有的Linux網絡驅動程序遵循通用的接口。設計時采用的是面向對象的方法。一個設備就是一個對象(device結構),它內部有自己的數據和方法。每一個...查看完整版>>Linux網絡驅動程序編寫(二)
 
Linux網絡驅動程序編寫(三)
     2.4常用的系統支持  2.4.1內存申請和釋放  include/linux/kernel.h裏聲明了kmalloc()和kfree()。用于在內核模式下申請和釋放內存。  void*kmalloc(unsignedintlen,intpriority);  voidkfree(void*_...查看完整版>>Linux網絡驅動程序編寫(三)
 
Linux網絡驅動程序編寫(四)
     三.編寫Linux網絡驅動程序中需要注意的問題  3.1 中斷共享  Linux系統運行幾個設備共享同一個中斷。需要共享的話,在申請的時候指明共享方式。系統提供的request_irq()調用的定義:    int request...查看完整版>>Linux網絡驅動程序編寫(四)
 
Linux操作系統網絡驅動程序編寫
工作需要寫了我們公司一塊網卡的Linux驅動程序。經曆一個從無到有的過程,深感技術交流的重要。Linux作爲挑戰微軟壟斷的強有力武器,日益受到大家的喜愛。真希望她能在中國迅速成長。把程序文檔貼出來,希望和大家探...查看完整版>>Linux操作系統網絡驅動程序編寫
 
 
回到王朝網路移動版首頁